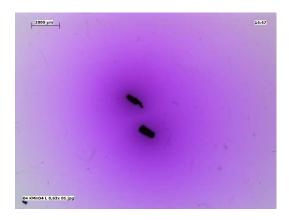

Diffusion, Osmose und Plasmolyse

Die Atome und Moleküle eines Gases oder einer Flüssigkeit bewegen sich bei Temperaturen oberhalb des absoluten Nullpunktes ständig ungerichtet (!) in alle Richtungen des Raumes. Da z.B. die an sich unsichbaren Wassermoleküle ständig größere sichbare Partikel anstoßen, schwingen diese gut sichtbar hin und her. Man bezeichnet diese sichtbare Bewegung als "Brownsche Molekularbewegung" (zu Beginn des 19. Jahrhunderts wurden unterschiedslos alle kleinen Partikel als "Moleküle" bezeichnet). So zeigen die Fetttröpfchen der Milch diese Bewegung sehr schön.



Milch zeigt die Brownsche Molekularbewegung sehr eindrucksvoll.


Eine Folge der Molekülbewegung ist die "Diffusion". Hierbei wandert ein gelöster Stoff stets mit dem Konzentrationsgefälle vom Orte höherer Konzentration zum Orte niedrigerer Konzentration, und das, obwohl die Bewegung aller Moleküle (oder Ionen) völlig ungerichtet erfolgt. Grund:

Am Orte der höheren Konzentration wandern zufällig (!) n_1 Teilchen in Richtung des Ortes der niedrigeren Konzentration. Gleichzeitig wandern n_2 Teilchen zufällig in die entgegengesetzte Richtung. Da $n_1 > n_2$ gilt, wandern netto $(n_1 - n_2)$ Teilchen zum Orte der niedrigeren Konzentration.

Zeitexperiment mit einem Kaliumpermanganat-Kristall [K⁺ (MnO⁴) in Wasser

Die hier erklärten Diffusionsvorgänge sind die Voraussetzung für das Phänomen der Osmose:

Löst man einen beliebigen Stoff in Wasser, so nimmt die "Wasserkonzentration" ab. Füllt man diese Lösung in ein Gefäß, das mit einer semipermeablen Membran verschlossen ist und taucht dieses in reines Wasser, so strömt Wasser mit dem Konzentrationsgefälle in das Gefäß und der hydrostatische Binnendruck nimmt zu. Die Höhe dieses Druckes errechnet sich über den "osmotischen Druck pos" des gelösten Stoffes:

 $p_{os} = c \cdot R \cdot T [atm]$

c: molare Konzentration

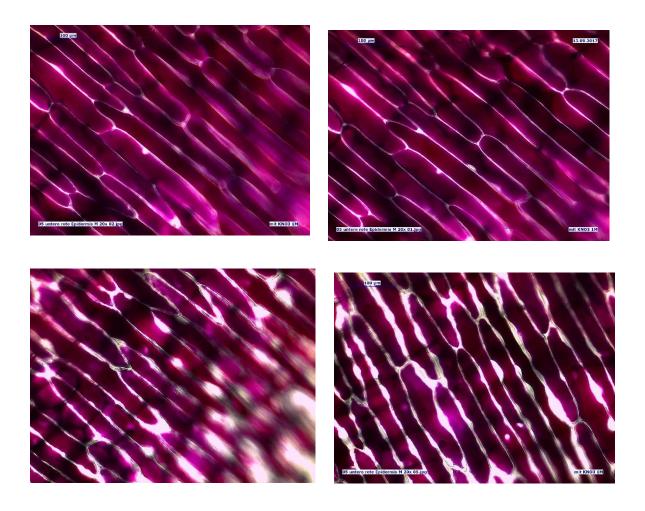
R: allgemeine Gaskonstante = 0,082 [ltr.atm / K]

T: Temperatur in Kelvin

Hier ein einfaches Beispiel:

Gelöst werden 30 g Glucose, Molekulargewicht 180, in einem Liter Wasser. Die Konzentration ist dann c = 30 / 180 = 0,167 Mol / ltr. Bei 20 $^{\circ}\text{C}$ ist dann T = 273 + 20 K = 293 K. In die Gleichung eingesetzt ist der osmotische Druck 4,0 atm.

Nun muss man nicht befürchten, dass einem die Kaffeetasse explodiert, wenn man Kaffee mit Zucker versetzt, denn der osmotische Druck tritt niemals direkt in Erscheinung; wenn man aber diese Lösung in ein wie oben beschriebenes Gefäß füllt und dieses dann in reines Wasser taucht, so entsteht im Inneren ein hydrostatischer Druck von 4,0 atm.


Dasselbe gilt auch für Pflanzenzellen, die ja mit einer unelastischen Zellwand umgeben sind: Diese stehen unter Druck, und eben dieser Druck ermöglicht es z.B. unverholzten Kräutern aufrecht zu stehen.

Ende des 19. Jahrhunderts begann man, osmotische Phänomene zu untersuchen, und hierbei war die Untersuchung von Plasmolysevorgängen für die Pflanzenphysiologie besonders wichtig: Führt man nämlich Plasmolyseversuche mit Lösungen unterschied-

licher Konzentration durch und ermittelt diejenige Konzentration, bei der die Plasmolyse gerade einsetzt ("Grenzplasmolyse"), so erhält man letztlich den maximalen hydrostatischen Druck, der sich in einer Pflanzenzelle ausbilden kann.

Die Ausbildung eines Zellinnendruckes ermöglichte es den Pflanzen im Devon die wasserfreie Erdoberfläche zu besiedeln, denn die Natur hatte noch nicht das zellwandversteifende Lignin "erfunden" – dies geschah erst in der Karbonzeit, in der erstmals "Bäume" wuchsen. Und welche Kräfte der Zellinnendruck freisetzt zeigen Pflanzenwurzeln, die sogar massive Mauern sprengen.

Zeitliche Farbveränderung Epidermisgewebe von roten Zwiebeln bei Zugabe einer 1 molaren Kaliumnitratlösung (5 Aufnahmen; 4davon mit Vergr. Obj.20x)

5. Bild Endzustand der Plasmolyse Es werden die Parenchymzellen sichtbar (Objektiv 40x)

Diffusion und Osmose

Brownsche Molekularbewegung

Benötigte Materialien und Geräte:

Objektträger. Deckgläser, **Milch** (oder Tusche). dest. Wasser, Tropfpipette, Mikroskop.

Geben Sie auf einen Objektträger einen Tropfen mit Wasser verdünnter Milch (50 Teile Wasser und 1 Teil **nicht homogenisierte** Milch), legen Sie ein Deckglas vorsichtig auf, und beobachten Sie mit 200-400facher Vergrößerung. Erläutern und erklären Sie Ihre Beobachtung (physikalischer Fachbegriff dieses Phänomens?

Diffusion

Benötigte Materialien und Geräte:

Petrischale. Kaliumpermanganat [Xn], dest. Wasser, weißes Papier, Pinzette.

Eine Petrischale wird auf weißes Papier gestellt, zur Hälfte mit Wasser gefüllt und so lange ruhig stehen gelassen. bis es keine Wasserbewegung mehr gibt. Dann lässt man einen kleinen Kristall Kaliumpermanganat mit einer Pinzette über der Mitte der Petrischale fallen und wartet ca. 5 Minuten.

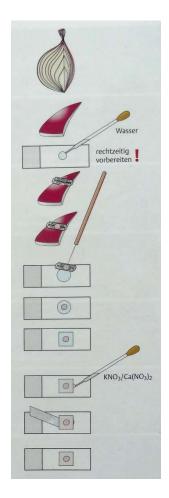
Dieser Versuch kann mit kaltem und heißem Wasser durchgeführt. Beschreiben und erläutern Sie Ihre Beobachtungen.

Plasmolyse und Deplasmolyse

Benötigte Materialien und Geräte:

Rote Küchenzwiebel (auch geeignet sind: Spirogyra. Fruchtfleisch von Ligusterbeeren).

Neue Rasierklingen, Objektträger, Deckgläser, Tropfpipetten. dest. Wasser. **konz. Kaliumnitratlösung; 1M (Salzlösung)** (oder Rohrzuckerlösung). Fließpapier (Toilettenpapier), Pinzette, Mikroskop.


Stellen Sie ein Zwiebelschuppenpräparat von der rot gefärbten, äußeren Zwiebelschuppenepidermis her. Bei mittlerer Vergrößerung werden gut überschaubare Zellen in die Bildmitte gebracht, beobachtet. (ca. 200x) und skizziert. Ein Tropfen konzentrierte Salzlösung (Kaliumnitratlsg.) wird anschließend an die eine Deckglaskante getropft und auf der gegenüberliegenden Seite wird mit Fließpapier das Wasser abgesaugt, sodass dieses langsam durch die Salzlösung ersetzt wird.

Dieser Vor-gang sollte bei ebenfalls mittlerer Vergrößerung optisch kontrolliert werden. Sollen keine Veränderungen langsam sichtbar werden, ist das Durchsaugen von Salzlösung zu wiederholen.

Anschließend wird eine Zelle, in der Veränderungen gut sichtbar wurden, in die Gesichtsfeldmitte gebracht und im Detail genau beobachtet. Vergleichen Sie diese mit weiteren Zellen.

Skizzieren Sie neben der Zelle im Ausgangszustand die verschiedenen Phasen der Veränderung.

Dazu fertigen Sie sich mehrere schematisierte Zwiebelzellumrisse an, in die Sie die Einzelheiten jeweils einzeichnen und beschriften.

Nach Anfertigung der Skizzen wird die Salzlösung durch destilliertes Wasser ersetzt. Beobachtung?

Erläutern Sie die Vorgänge der Plasmolyse und Deplasmolyse anhand Ihrer genauen Beobachtungen und mit Hilfe Ihrer theoretischen Kenntnisse.

Mögliche Zusatzversuche

Die Vakuole als Ionenfalle

Benötigte Materialien und Geräte:

Küchenzwiebel, Neutralrot-Stammlösung: 0,1 g in 100 ml Wasser lösen (vor Gebrauch wird mit Leitungswasser auf 1/10 verdünnt; wichtig, da Leitungswasser leicht alkalisch),

Objektträger, Deckgläser, Pinzette, Skalpell, Tropfpipette, Mikroskop.

Ein oder zwei Präparat (mit Rasierklinge kleine Vierecke einschneiden und die dünne inneren farblosen Zwiebelschuppenepidermis abziehen). werden in einen Wassertropfen gelegt mit einem Deckglas abgedeckt und unter das Mikroskop gebracht und bei mittlerer Vergrößerung scharf gestellt. Dann wird zwei- bis dreimal Tropfen Neutralrotlösung durch das Präparat gesaugt und ca. 10 Minuten gewartet. Erläutern Sie Ihre Beobachtungen.

Hilfestellung:

Neutralrot ist ein N-haltiger aromat. Farbstoff , dessen Ladungszustand vom pH-Wert abhängt. In leicht saurem Milieu kann das Neutralrotmolekül H⁺ -lonen aufnehmen, wodurch es eine positive Ladung erhält.

In neutralem und leicht alkalischem Milieu ist das Neutralrotmolekül ungeladen. Der Zellsaft in der Vakuole ist leicht sauer (pH 4-5).

Welche Stoffe sind osmotisch wirksam?

Benötigte Materialien und Geräte:

Rohrzucker, Kochsalz, Stärke, Kartoffel, Messer, Spatel.

Schneiden Sie von der Kartoffel drei ca. 1 cm dicke Scheiben ab und kratzen in der Mitte der Scheibe jeweils eine Vertiefung aus. In diese Vertiefung wird jeweils etwas Kochsalz, Rohrzucker oder Stärke gegeben.

Notieren Sie nach etwa 10 Minuten Ihre Beobachtung und erläutern Sie diese.